Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Prep Biochem Biotechnol ; 50(1): 91-97, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31517567

RESUMO

Xylanases have gained increasing importance due to their diverse applications in the food, paper, and pharmaceutical industries, however, the production of these enzymes currently uses expensive substrates. It has already been estimated that more than 30% of the enzyme production cost originates from the substrate. The present study aimed to optimize the production of extracellular xylanases by the Bacillus sp. TC-DT 13 using solid-state fermentation with agro-industrial residues, with a view at reducing the production cost of these enzymes. All the agro-industrial residues were tested in submerged fermentation to select the best inductor to produce xylanase. Among these residues, wheat bran was selected as the best inducer of xylanase production with 1500 U/mL. Regarding solid-state fermentation, the use of wheat bran as the only fermentation substrate was used and a ratio of 1:4 moisture over a time of 144 hours induced higher amount of xylanase reaching 2943 U/g. The use of carbon and nitrogen sources did not result in the increase in production of xylanolitic enzymes. The use of agro-industrial residues in the solid-state fermentation, besides increasing the production of xylanase, reduces the cost of production and is an environmentally friendly alternative.


Assuntos
Bacillus/enzimologia , Fibras na Dieta/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Bacillus/metabolismo , Carbono/metabolismo , Fermentação , Microbiologia Industrial/economia , Microbiologia Industrial/métodos , Nitrogênio/metabolismo , Temperatura
2.
Environ Sci Pollut Res Int ; 27(4): 4376-4389, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31832936

RESUMO

The increased use of pesticides applied to treat diseases caused by bacteria has caused serious environmental problems. There are few fungicides/bactericides for the treatment of plant diseases caused by Xanthomonas campestris pv. campestris (Xcc), and only two natural products with general bactericidal/fungicidal use are available on the market. Thus, this study evaluated the antimicrobial activity of essential oils (EOs), and their combinations, from five distinct genotypes of Cordia curassavica (Jacq.) Roem. & Schult (Syn. Varronia curassavica Jacq.) (CCUR) against Xcc. GC/MS chemical analysis revealed α-pinene, sabinene, (E)-caryophyllene, ar-curcumene, ß-sesquiphellandrene, 7-cyclodecen-1-one, and ar-Turmerone as the major compounds of the five EOs of CCUR. All EOs showed growth inhibition of Xcc with minimum inhibitory concentration between 500 and 1000 µg mL-1. The associations between two EOs from different CCUR genotypes showed that 70% of the total combinations had an additive effect. However, the combinations between CCUR-002 × (-302, -202) and CCUR-302 × (-601) showed a synergistic effect, with mean fractional inhibitory concentration FIC50 values of 0.28, 0.42, and 0.40, respectively. This study demonstrates that combinations of C. curassavica EOs have antimicrobial activity and a potential to be used in the control of black rot. Graphical abstract.


Assuntos
Antibacterianos/farmacologia , Cordia/química , Óleos Voláteis/farmacologia , Óleos de Plantas/farmacologia , Xanthomonas campestris/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle
3.
Pestic Biochem Physiol ; 160: 40-48, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31519256

RESUMO

Xanthomonas campestris pv.campestris (Xcc) is the causative agent of black rot, a disease that causes serious damage to plants from Brassicaceae family. However, there are no chemicals or biological agent commercially registered for the control of this disease. Thus, this study aimed to evaluate the antimicrobial activity and chemical composition of Lippia gracilis essential oils (EOs) on Xcc aiming its use as effective biological control. We also investigated the effect of EOs on the integrity of the bacterial cytoplasmic membrane. Chemical analysis by GC/MS showed that the major compounds of the seven EOs of L. gracilis are thymol or carvacrol. The seven genotypes showed inhibition of bacterial growth with MIC from 700 µg.ml-1 to 1000 µg.ml-1, with the genotype LGRA-106 (rich in Thymol) with higher antimicrobial activity. The MIC for thymol and carvacrol were 250 µg.ml-1. After exposure to LGRA-106 EO (2×, 1×, 1/2×, 1/4×, and 1/8 x MIC for 5 min, it was observed a decreased cell viability and increased pI fluorescence, which indicates damage to the cytoplasmic cell membrane. This study demonstrates that L. gracilis EOs have antimicrobial activity and have a potential to be used in the control of black rot. Furthermore this antimicrobial activity is due, at least in part, to bacterial cytoplasmic membrane damage.


Assuntos
Antibacterianos/farmacologia , Lippia/química , Óleos Voláteis/farmacologia , Xanthomonas campestris/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Citoplasma/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...